Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(5): 387-399, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37947186

RESUMO

The neurodegenerative disorder, Huntington disease (HD), manifests as disorders of movement, cognition and mood. Although studies report abnormal corticostriatal synaptic function early in HD mouse models, less is known about cortical-cortical activity across brain regions and disease stages. Recently, we reported enhanced mesoscale spread of cortical responses to sensory stimulation in vivo at early-manifest stages of two HD mouse models. Here, we investigated cortical excitability of zQ175 HD-model mice compared to their wild-type littermates across different cell types, ages and/or cortical regions using ex vivo electrophysiology. Cortical pyramidal neurons (CPNs) in somatosensory cortex of zQ175 mice showed intrinsic hyper-excitability at 3-4 months, but hypo-excitability at early-manifest stage (8-9 months); reduced frequency of spontaneous excitatory postsynaptic currents (sEPSCs) was seen at both ages. In contrast, motor cortex CPNs in early-manifest zQ175 mice showed increased intrinsic excitability and sEPSC frequency. Large-amplitude excitatory discharges recorded from CPNs in early-manifest zQ175 mice showed increased frequency only in somatosensory cortex, suggesting the intrinsic hypo-excitability of these CPNs may be compensatory against cortical network hyper-excitability. Similarly, in early-manifest zQ175 mice, region-dependent differences were seen in fast-spiking interneurons (FSIs): somatosensory but not motor FSIs from early-manifest zQ175 mice had reduced intrinsic excitability. Moreover, CPNs showed decreased frequency of spontaneous inhibitory postsynaptic currents and increased excitatory-inhibitory (E-I) balance of evoked synaptic currents in somatosensory cortex. Aberrant large-amplitude discharges and reduced inhibitory drive may therefore underlie E-I imbalances that result in circuit changes and synaptic dysfunction in early-manifest HD.


Assuntos
Excitabilidade Cortical , Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Células Piramidais/metabolismo , Interneurônios/metabolismo , Fenômenos Eletrofisiológicos
2.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707495

RESUMO

The cardiac IKs ion channel comprises KCNQ1, calmodulin, and KCNE1 in a dodecameric complex which provides a repolarizing current reserve at higher heart rates and protects from arrhythmia syndromes that cause fainting and sudden death. Pharmacological activators of IKs are therefore of interest both scientifically and therapeutically for treatment of IKs loss-of-function disorders. One group of chemical activators are only active in the presence of the accessory KCNE1 subunit and here we investigate this phenomenon using molecular modeling techniques and mutagenesis scanning in mammalian cells. A generalized activator binding pocket is formed extracellularly by KCNE1, the domain-swapped S1 helices of one KCNQ1 subunit and the pore/turret region made up of two other KCNQ1 subunits. A few residues, including K41, A44 and Y46 in KCNE1, W323 in the KCNQ1 pore, and Y148 in the KCNQ1 S1 domain, appear critical for the binding of structurally diverse molecules, but in addition, molecular modeling studies suggest that induced fit by structurally different molecules underlies the generalized nature of the binding pocket. Activation of IKs is enhanced by stabilization of the KCNQ1-S1/KCNE1/pore complex, which ultimately slows deactivation of the current, and promotes outward current summation at higher pulse rates. Our results provide a mechanistic explanation of enhanced IKs currents by these activator compounds and provide a map for future design of more potent therapeutically useful molecules.


Assuntos
Calmodulina , Canal de Potássio KCNQ1 , Animais , Canal de Potássio KCNQ1/genética , Calmodulina/genética , Coração , Frequência Cardíaca , Fatores Imunológicos , Mamíferos
3.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596592

RESUMO

Huntington disease (HD), caused by dominantly inherited expansions of a CAG repeat results in characteristic motor dysfunction. Although gross motor defects have been extensively characterized in multiple HD mouse models using tasks such as rotarod and beam walking, less is known about forelimb deficits. We develop a high-throughput alternating reward/nonreward water-reaching task and training protocol conducted daily over approximately two months to simultaneously monitor forelimb impairment and mesoscale cortical changes in GCaMP activity, comparing female zQ175 (HD) and wild-type (WT) littermate mice, starting at ∼5.5 months. Behavioral analysis of the water-reaching task reveals that HD mice, despite learning the water-reaching task as proficiently as wild-type mice, take longer to learn the alternating event sequence as evident by impulsive (noncued) reaches and initially display reduced cortical activity associated with successful reaches. At this age gross motor defects determined by tapered beam assessment were not apparent. Although wild-type mice displayed no significant changes in cortical activity and reaching trajectory throughout the testing period, HD mice exhibited an increase in cortical activity, especially in the secondary motor and retrosplenial cortices, over time, as well as longer and more variable reaching trajectories by approximately seven months. HD mice also experienced a progressive reduction in successful performance. Tapered beam and rotarod tests as well as reduced DARPP-32 expression (striatal medium spiny neuron marker) after water-reaching assessment confirmed HD pathology. The water-reaching task can be used to inform on a daily basis, HD and other movement disorder onset and manifestation, therapeutic intervention windows, and test drug efficacy.


Assuntos
Doença de Huntington , Camundongos , Feminino , Animais , Doença de Huntington/metabolismo , Movimento , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
4.
Neuron ; 110(22): 3688-3710, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36198319

RESUMO

Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.


Assuntos
Doença de Alzheimer , Acidente Vascular Cerebral , Animais , Camundongos , Neurônios/fisiologia , Encéfalo/fisiologia , Doença de Alzheimer/diagnóstico por imagem , Neurofisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
5.
Pest Manag Sci ; 78(2): 521-529, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561954

RESUMO

BACKGROUND: In-field weed detection in wheat (Triticum aestivum L.) is challenging due to the occurrence of weeds in close proximity with the crop. The objective of this research was to evaluate the feasibility of using deep convolutional neural networks for detecting broadleaf weed seedlings growing in wheat. RESULTS: The object detection neural networks, including CenterNet, Faster R-CNN, TridenNet, VFNet, and You Only Look Once Version 3 (YOLOv3) were insufficient for weed detection in wheat because the recall never exceeded 0.58 in the testing dataset. The image classification neural networks including AlexNet, DenseNet, ResNet, and VGGNet were trained with small (5500 negative and 5500 positive images) or large training datasets (11 000 negative and 11 000 positive images) and three training image sizes (200 × 200, 300 × 300, and 400 × 400 pixels). For the small training dataset, increasing image sizes decreased the F1 scores of AlexNet and VGGNet but generally increased the F1 scores of DenseNet and ResNet. For the large training dataset, no obvious difference was detected between the training image sizes since all neural networks exhibited remarkable classification accuracies with high F1 scores (≥0.96). All image classification neural networks exhibited high F1 scores (≥0.99) when trained with the large training dataset and the training images of 200 × 200 pixels. CONCLUSION: CenterNet, Faster R-CNN, TridentNet, VFNet, and YOLOv3 were insufficient, while AlexNet, DenseNet, ResNet, and VGGNet trained with a large training dataset were highly effective for detection of broadleaf weed seedlings in wheat. © 2021 Society of Chemical Industry.


Assuntos
Plântula , Triticum , Redes Neurais de Computação , Plantas Daninhas
6.
J Gen Physiol ; 153(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34636894

RESUMO

KCNQ1 is a pore-forming K+ channel subunit critically important to cardiac repolarization at high heart rates. (2R)-N-[4-(4-methoxyphenyl)-2-thiazolyl]-1-[(4-methylphenyl)sulfonyl]-2 piperidinecarboxamide, or ML277, is an activator of this channel that rescues function of pathophysiologically important mutant channel complexes in human induced pluripotent stem cell-derived cardiomyocytes, and that therefore may have therapeutic potential. Here we extend our understanding of ML277 actions through cell-attached single-channel recordings of wild-type and mutant KCNQ1 channels with voltage sensor domains fixed in resting, intermediate, and activated states. ML277 has profound effects on KCNQ1 single-channel kinetics, eliminating the flickering nature of the openings, converting them to discrete opening bursts, and increasing their amplitudes approximately threefold. KCNQ1 single-channel behavior after ML277 treatment most resembles IO state-locked channels (E160R/R231E) rather than AO state channels (E160R/R237E), suggesting that at least during ML277 treatment, KCNQ1 does not frequently visit the AO state. Introduction of KCNE1 subunits reduces the effectiveness of ML277, but some enhancement of single-channel openings is still observed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Cinética , Miócitos Cardíacos/metabolismo , Piperidinas , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Tiazóis , Compostos de Tosil
7.
Front Physiol ; 11: 504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581825

RESUMO

The IKs channel complex is formed by the co-assembly of Kv7.1 (KCNQ1), a voltage-gated potassium channel, with its ß-subunit, KCNE1 and the association of numerous accessory regulatory molecules such as PIP2, calmodulin, and yotiao. As a result, the IKs potassium current shows kinetic and regulatory flexibility, which not only allows IKs to fulfill physiological roles as disparate as cardiac repolarization and the maintenance of endolymph K+ homeostasis, but also to cause significant disease when it malfunctions. Here, we review new areas of understanding in the assembly, kinetics of activation and inactivation, voltage-sensor pore coupling, unitary events and regulation of this important ion channel complex, all of which have been given further impetus by the recent solution of cryo-EM structural representations of KCNQ1 alone and KCNQ1+KCNE3. Recently, the stoichiometric ratio of KCNE1 to KCNQ1 subunits has been confirmed to be variable up to a ratio of 4:4, rather than fixed at 2:4, and we will review the results and new methodologies that support this conclusion. Significant advances have been made in understanding differences between KCNQ1 and IKs gating using voltage clamp fluorimetry and mutational analysis to illuminate voltage sensor activation and inactivation, and the relationship between voltage sensor translation and pore domain opening. We now understand that the KCNQ1 pore can open with different permeabilities and conductance when the voltage sensor is in partially or fully activated positions, and the ability to make robust single channel recordings from IKs channels has also revealed the complicated pore subconductance architecture during these opening steps, during inactivation, and regulation by 1-4 associated KCNE1 subunits. Experiments placing mutations into individual voltage sensors to drastically change voltage dependence or prevent their movement altogether have demonstrated that the activation of KCNQ1 alone and IKs can best be explained using allosteric models of channel gating. Finally, we discuss how the intrinsic gating properties of KCNQ1 and IKs are highly modulated through the impact of intracellular signaling molecules and co-factors such as PIP2, protein kinase A, calmodulin and ATP, all of which modulate IKs current kinetics and contribute to diverse IKs channel complex function.

8.
Mol Pharmacol ; 97(2): 132-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31722973

RESUMO

The pairing of KCNQ1 and KCNE1 subunits together mediates the cardiac slow delayed rectifier current (I Ks ), which is partly responsible for cardiomyocyte repolarization and physiologic shortening of the cardiac action potential. Mefenamic acid, a nonsteroidal anti-inflammatory drug, has been identified as an I Ks activator. Here, we provide a biophysical and pharmacological characterization of mefenamic acid's effect on I Ks Using whole-cell patch clamp, we show that mefenamic acid enhances I Ks activity in both a dose- and stoichiometry-dependent fashion by changing the slowly activating and deactivating I Ks current into an almost linear current with instantaneous onset and slowed tail current decay, sensitive to the I Ks blocker (3R,4S)-(+)-N-[3-hydroxy-2,2-dimethyl-6-(4,4,4-trifluorobutoxy) chroman-4-yl]-N-methylmethanesulfonamide (HMR1556). Both single channels, which reveal no change in the maximum conductance, and whole-cell studies, which reveal a dramatically altered conductance-voltage relationship despite increasingly longer interpulse intervals, suggest mefenamic acid decreases the voltage sensitivity of the I Ks channel and shifts channel gating kinetics toward more negative potentials. Modeling studies revealed that changes in voltage sensor activation kinetics are sufficient to reproduce the dose and frequency dependence of mefenamic acid action on I Ks channels. Mutational analysis showed that mefenamic acid's effect on I Ks required residue K41 and potentially other surrounding residues on the extracellular surface of KCNE1, and explains why the KCNQ1 channel alone is insensitive to up to 1 mM mefenamic acid. Given that mefenamic acid can enhance all I Ks channel complexes containing different ratios of KCNQ1 to KCNE1, it may provide a promising therapeutic approach to treating life-threatening cardiac arrhythmia syndromes. SIGNIFICANCE STATEMENT: The channels which generate the cardiac slow delayed rectifier K+ current (I Ks ) are composed of KCNQ1 and KCNE1 subunits. Due to the critical role played by I Ks in heartbeat regulation, enhancing I Ks current has been identified as a promising therapeutic strategy to treat various heart rhythm diseases. Most I Ks activators, unfortunately, only work on KCNQ1 alone and not the physiologically relevant I Ks channel. We have demonstrated that mefenamic acid can enhance I Ks in a dose- and stoichiometry-dependent fashion, regulated by its interactions with KCNE1.


Assuntos
Antiarrítmicos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ácido Mefenâmico/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Relação Dose-Resposta a Droga , Fibroblastos , Células HEK293 , Frequência Cardíaca/fisiologia , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Biol Chem ; 291(47): 24528-24537, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27733687

RESUMO

Recent three-dimensional structural studies reveal that the central domain of ryanodine receptor (RyR) serves as a transducer that converts long-range conformational changes into the gating of the channel pore. Interestingly, the central domain encompasses one of the mutation hotspots (corresponding to amino acid residues 3778-4201) that contains a number of cardiac RyR (RyR2) mutations associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) and atrial fibrillation (AF). However, the functional consequences of these central domain RyR2 mutations are not well understood. To gain insights into the impact of the mutation and the role of the central domain in channel function, we generated and characterized eight disease-associated RyR2 mutations in the central domain. We found that all eight central domain RyR2 mutations enhanced the Ca2+-dependent activation of [3H]ryanodine binding, increased cytosolic Ca2+-induced fractional Ca2+ release, and reduced the activation and termination thresholds for spontaneous Ca2+ release in HEK293 cells. We also showed that racemic carvedilol and the non-beta-blocking carvedilol enantiomer, (R)-carvedilol, suppressed spontaneous Ca2+ oscillations in HEK293 cells expressing the central domain RyR2 mutations associated with CPVT and AF. These data indicate that the central domain is an important determinant of cytosolic Ca2+ activation of RyR2. These results also suggest that altered cytosolic Ca2+ activation of RyR2 represents a common defect of RyR2 mutations associated with CPVT and AF, which could potentially be suppressed by carvedilol or (R)-carvedilol.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Arritmias Cardíacas/genética , Citosol/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
10.
J Biol Chem ; 291(5): 2150-60, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26663082

RESUMO

Activation of the cardiac ryanodine receptor (RyR2) by elevating cytosolic Ca(2+) is a central step in the process of Ca(2+)-induced Ca(2+) release, but the molecular basis of RyR2 activation by cytosolic Ca(2+) is poorly defined. It has been proposed recently that the putative Ca(2+) binding domain encompassing a pair of EF-hand motifs (EF1 and EF2) in the skeletal muscle ryanodine receptor (RyR1) functions as a Ca(2+) sensor that regulates the gating of RyR1. Although the role of the EF-hand domain in RyR1 function has been studied extensively, little is known about the functional significance of the corresponding EF-hand domain in RyR2. Here we investigate the effect of mutations in the EF-hand motifs on the Ca(2+) activation of RyR2. We found that mutations in the EF-hand motifs or deletion of the entire EF-hand domain did not affect the Ca(2+)-dependent activation of [(3)H]ryanodine binding or the cytosolic Ca(2+) activation of RyR2. On the other hand, deletion of the EF-hand domain markedly suppressed the luminal Ca(2+) activation of RyR2 and spontaneous Ca(2+) release in HEK293 cells during store Ca(2+) overload or store overload-induced Ca(2+) release (SOICR). Furthermore, mutations in the EF2 motif, but not EF1 motif, of RyR2 raised the threshold for SOICR termination, whereas deletion of the EF-hand domain of RyR2 increased both the activation and termination thresholds for SOICR. These results indicate that, although the EF-hand domain is not required for RyR2 activation by cytosolic Ca(2+), it plays an important role in luminal Ca(2+) activation and SOICR.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Centrifugação com Gradiente de Concentração , Motivos EF Hand , Deleção de Genes , Células HEK293 , Humanos , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Biochem J ; 467(1): 177-90, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605235

RESUMO

The cardiac Ca²âº release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³6³5 in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³6°²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³6°² (C³6°²A) on store overload-induced Ca²âº release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³6°²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²âº release by reducing the termination threshold. As a result, C³6°²A markedly increased the fractional Ca²âº release. Furthermore, the C³6°²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²âº release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²âº release. In addition, Cys³6°² mutations (C³6°²A or C³6°²R) did not abolish the effect of CaM on Ca²âº-release termination. Therefore, RyR2-Cys³6°² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³6°² plays an important role in the activation and termination of Ca²âº release, but it is not essential for CaM regulation of RyR2.


Assuntos
Sinalização do Cálcio , Calmodulina/metabolismo , Cisteína/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alquilação/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/química , Calmodulina/genética , Sequência Conservada , Dissulfetos/farmacologia , Etilmaleimida/farmacologia , Células HEK293 , Humanos , Cinética , Camundongos , Oxirredução , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Piridinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Reagentes de Sulfidrila/farmacologia
12.
J Biol Chem ; 290(12): 7736-46, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627681

RESUMO

The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.


Assuntos
Cálcio/metabolismo , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Western Blotting , Cafeína/farmacologia , Células HEK293 , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...